Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biomimetics (Basel) ; 9(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667208

RESUMO

BACKGROUND: Experimental coronary artery interventions are currently being performed on non-diseased blood vessels in healthy animals. To provide a more realistic pathoanatomical scenario for investigations on novel interventional and surgical therapies, we aimed to fabricate a stenotic lesion, mimicking the morphology and structure of a human atherosclerotic plaque. METHODS: In an interdisciplinary setting, we engineered a casting mold to create an atherosclerotic plaque with the dimensions to fit in a porcine coronary artery. Oscillatory rheology experiments took place along with long-term stability tests assessed by microscopic examination and weight monitoring. For the implantability in future in vivo setups, we performed a cytotoxicity assessment, inserted the plaque in resected pig hearts, and performed diagnostic imaging to visualize the plaque in its final position. RESULTS: The most promising composition consists of gelatin, cholesterol, phospholipids, hydroxyapatite, and fine-grained calcium carbonate. It can be inserted in the coronary artery of human-sized pig hearts, producing a local partial stenosis and interacting like the atherosclerotic plaque by stretching and shrinking with the vessel wall and surrounding tissue. CONCLUSION: This artificial atherosclerotic plaque model works as a simulating tool for future medical testing and could be crucial for further specified research on coronary artery disease and is going to help to provide information about the optimal interventional and surgical care of the disease.

2.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485931

RESUMO

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Mamíferos
4.
Biology (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627007

RESUMO

Appropriate cardiovascular animal models are urgently needed to investigate genetic, molecular, and therapeutic approaches, yet the translation of results from the currently used species is difficult due to their genetic distance as well as their anatomical or physiological differences. Animal species that are closer to the human situation might help to bridge this translational gap. The common marmoset (Callithrix jacchus) is an interesting candidate to investigate certain heart diseases and cardiovascular comorbidities, yet a basic functional characterization of its hemodynamic system is still missing. Therefore, cardiac functional analyses were performed by utilizing the invasive intracardiac pressure-volume loops (PV loop) system in seven animals, magnetic resonance imaging (MRI) in six animals, and echocardiography in five young adult male common marmosets. For a direct comparison between the three methods, only data from animals for which all three datasets could be acquired were selected. All three modalities were suitable for characterizing cardiac function, though with some systemic variations. In addition, vena cava occlusions were performed to investigate the load-independent parameters collected with the PV loop system, which allowed for a deeper analysis of the cardiac function and for a more sensitive detection of the alterations in a disease state, such as heart failure or certain cardiovascular comorbidities.

5.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768805

RESUMO

Cardiovascular complications are the main cause of morbidity and mortality from diabetes. Herein, vascular inflammation is a major pathological manifestation. We previously characterized the cardiac microvascular inflammatory phenotype in diabetic patients and highlighted micro-RNA 92a (miR-92a) as a driver of endothelial dysfunction. In this article, we further dissect the molecular underlying of these findings by addressing anti-inflammatory Krüppel-like factors 2 and 4 (KLF2 and KLF4). We show that KLF2 dysregulation in diabetes correlates with greater monocyte adhesion as well as migratory defects in cardiac microvascular endothelial cells. We also describe, for the first time, a role for myocyte enhancer factor 2D (MEF2D) in cardiac microvascular dysfunction in diabetes. We show that both KLFs 2 and 4, as well as MEF2D, are dysregulated in human and porcine models of diabetes. Furthermore, we prove a direct interaction between miR-92a and all three targets. Altogether, our data strongly qualify miR-92a as a potential therapeutic target for diabetes-associated cardiovascular disease.


Assuntos
Diabetes Mellitus , MicroRNAs , Humanos , Animais , Suínos , Fatores de Transcrição MEF2/genética , Células Endoteliais , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Diabetes Mellitus/genética , Inflamação
6.
Commun Biol ; 6(1): 79, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681760

RESUMO

Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (ß-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of ß-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from ß-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Proteostase , Proteômica , Transcriptoma , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica
7.
Basic Res Cardiol ; 118(1): 5, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700983

RESUMO

Long non-coding RNAs (lncRNAs) can act as regulatory RNAs which, by altering the expression of target genes, impact on the cellular phenotype and cardiovascular disease development. Endothelial lncRNAs and their vascular functions are largely undefined. Deep RNA-Seq and FANTOM5 CAGE analysis revealed the lncRNA LINC00607 to be highly enriched in human endothelial cells. LINC00607 was induced in response to hypoxia, arteriosclerosis regression in non-human primates, post-atherosclerotic cultured endothelial cells from patients and also in response to propranolol used to induce regression of human arteriovenous malformations. siRNA knockdown or CRISPR/Cas9 knockout of LINC00607 attenuated VEGF-A-induced angiogenic sprouting. LINC00607 knockout in endothelial cells also integrated less into newly formed vascular networks in an in vivo assay in SCID mice. Overexpression of LINC00607 in CRISPR knockout cells restored normal endothelial function. RNA- and ATAC-Seq after LINC00607 knockout revealed changes in the transcription of endothelial gene sets linked to the endothelial phenotype and in chromatin accessibility around ERG-binding sites. Mechanistically, LINC00607 interacted with the SWI/SNF chromatin remodeling protein BRG1. CRISPR/Cas9-mediated knockout of BRG1 in HUVEC followed by CUT&RUN revealed that BRG1 is required to secure a stable chromatin state, mainly on ERG-binding sites. In conclusion, LINC00607 is an endothelial-enriched lncRNA that maintains ERG target gene transcription by interacting with the chromatin remodeler BRG1 to ultimately mediate angiogenesis.


Assuntos
RNA Longo não Codificante , Animais , Humanos , Camundongos , Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Camundongos SCID , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , Neovascularização Fisiológica
8.
Magn Reson Med ; 89(4): 1368-1384, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36404631

RESUMO

PURPOSE: To develop a free-breathing myocardial T 1 $$ {\mathrm{T}}_1 $$ mapping technique using inversion-recovery (IR) radial fast low-angle shot (FLASH) and calibrationless motion-resolved model-based reconstruction. METHODS: Free-running (free-breathing, retrospective cardiac gating) IR radial FLASH is used for data acquisition at 3T. First, to reduce the waiting time between inversions, an analytical formula is derived that takes the incomplete T 1 $$ {\mathrm{T}}_1 $$ recovery into account for an accurate T 1 $$ {\mathrm{T}}_1 $$ calculation. Second, the respiratory motion signal is estimated from the k-space center of the contrast varying acquisition using an adapted singular spectrum analysis (SSA-FARY) technique. Third, a motion-resolved model-based reconstruction is used to estimate both parameter and coil sensitivity maps directly from the sorted k-space data. Thus, spatiotemporal total variation, in addition to the spatial sparsity constraints, can be directly applied to the parameter maps. Validations are performed on an experimental phantom, 11 human subjects, and a young landrace pig with myocardial infarction. RESULTS: In comparison to an IR spin-echo reference, phantom results confirm good T 1 $$ {\mathrm{T}}_1 $$ accuracy, when reducing the waiting time from 5 s to 1 s using the new correction. The motion-resolved model-based reconstruction further improves T 1 $$ {\mathrm{T}}_1 $$ precision compared to the spatial regularization-only reconstruction. Aside from showing that a reliable respiratory motion signal can be estimated using modified SSA-FARY, in vivo studies demonstrate that dynamic myocardial T 1 $$ {\mathrm{T}}_1 $$ maps can be obtained within 2 min with good precision and repeatability. CONCLUSION: Motion-resolved myocardial T 1 $$ {\mathrm{T}}_1 $$ mapping during free-breathing with good accuracy, precision and repeatability can be achieved by combining inversion-recovery radial FLASH, self-gating and a calibrationless motion-resolved model-based reconstruction.


Assuntos
Imageamento por Ressonância Magnética , Miocárdio , Humanos , Suínos , Animais , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Respiração , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
J Thorac Cardiovasc Surg ; 166(4): 1119-1129.e1, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35379474

RESUMO

OBJECTIVE: Due to severely limited donor heart availability, durable mechanical circulatory support remains the only treatment option for many patients with end-stage heart failure. However, treatment complexity persists due to its univentricular support modality and continuous contact with blood. We investigated the function and safety of reBEAT (AdjuCor GmbH), a novel, minimal invasive mechanical circulatory support device that completely avoids blood contact and provides pulsatile, biventricular support. METHODS: For each animal tested, an accurately sized cardiac implant was manufactured from computed tomography scan analyses. The implant consists of a cardiac sleeve with three inflatable cushions, 6 epicardial electrodes and driveline connecting to an electro-pneumatic, extracorporeal portable driver. Continuous epicardial electrocardiogram signal analysis allows for systolic and diastolic synchronization of biventricular mechanical support. In 7 pigs (weight, 50-80 kg), data were analyzed acutely (under beta-blockade, n = 5) and in a 30-day long-term survival model (n = 2). Acquisition of intracardiac pressures and aortic and pulmonary flow data were used to determine left ventricle and right ventricle stroke work and stroke volume, respectively. RESULTS: Each implant was successfully positioned around the ventricles. Automatic algorithm electrocardiogram signal annotations resulted in precise, real-time mechanical support synchronization with each cardiac cycle. Consequently, progressive improvements in cardiac hemodynamic parameters in acute animals were achieved. Long-term survival demonstrated safe device integration, and clear and stable electrocardiogram signal detection over time. CONCLUSIONS: The present study demonstrates biventricular cardiac support with reBEAT. Various demonstrated features are essential for realistic translation into the clinical setting, including safe implantation, anatomical fit, safe device-tissue integration, and real-time electrocardiogram synchronized mechanical support, result in effective device function and long-term safety.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Animais , Suínos , Humanos , Doadores de Tecidos , Hemodinâmica
10.
Methods Mol Biol ; 2573: 159-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040593

RESUMO

Coronary heart disease is one of the leading causes of death in industrialized nations. Even though revascularization strategies improved the outcome of patients after acute myocardial infarction, about 30% of patients develop chronic heart failure. Ischemic heart disease and heart failure are characterized by an adverse remodeling of the heart, featuring cardiomyocyte hypertrophy, increased fibrosis, and capillary rarefaction. Therefore, novel therapeutic approaches for the treatment of heart failure, such as reducing ischemia/reperfusion injury, fibrosis, or hypertrophy, are needed. Here microRNAs (miRNAs) come into play. For heart failure, cardiac stress and several cardiovascular diseases, individual miRNAs, and whole miRNA clusters have been implicated as disease relevant and dysregulated. miRNAs are short non-coding RNA molecules of about 22 nucleotides, and their inhibitors are 8-15 nucleotides long plus a sugar-ring (LNA, locked nucleid acid) or cholesterol ending (AntagomiR). Modulation of miRNAs might serve as therapeutic targets through miRNA knockdown or overexpression via miRNA mimics. Due to their pleiotropic mode of action and the presence of individual miRNAs in a variety of tissues and cells, a local, target region-oriented application is important to achieve therapeutic effects and at the same time reducing adverse effects in other off-target organs and tissues. Due to their small size, the miRNA inhibitors are able to pass endothelial barrier at both arterial and venous sides of the bloodstream vessels. For these reasons, the gold standard administration route of miRNA modulators for therapeutic approaches of the left ventricle is the anterograde application into one or both coronary arteries via an over-the-wire (OTW) balloon. In this chapter we provide a comprehensive description of the anterograde application procedure in a large animal model such as pig. Of a particular note, this methodology is a standard procedure in catheter laboratories, a key characteristic that allows therapeutic translation from large animals to patients.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Animais , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Hipertrofia , MicroRNAs/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Suínos
11.
Front Cell Dev Biol ; 10: 860005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433670

RESUMO

Exosomes are small bi-lipid membranous vesicles (30-150 nm) containing different biological material such as proteins, lipids and nucleic acid. These small vesicles, inducing a cell to cell signaling pathway, are able to mediate multidirectional crosstalk to maintain homeostasis or modulate disease processes. With their various contents, exosomes sort and transfer specific information from their origin to a recipient cell, from a tissue or organ in the close proximity or at distance, generating an intra-inter tissue or organ communication. In the last decade exosomes have been identified in multiple organs and fluids under different pathological conditions. In particular, while the content and the abundance of exosome is now a diagnostic marker for cardiovascular diseases, their role in context-specific physiological and pathophysiological conditions in the cardiovascular system remains largely unknown. We summarize here the current knowledge on the role of exosomes as mediators of cardiovascular diseases in several pathophysiological conditions such as atherosclerosis and diabetes. In addition, we describe evidence of intercellular connection among multiple cell type (cardiac, vasculature, immune cells) as well as the challenge of their in vivo analysis.

12.
Adv Sci (Weinh) ; 9(7): e2103867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023328

RESUMO

Adeno-associated viruses (AAVs) are frequently used for gene transfer and gene editing in vivo, except for endothelial cells, which are remarkably resistant to unmodified AAV-transduction. AAVs are retargeted here toward endothelial cells by coating with second-generation polyamidoamine dendrimers (G2) linked to endothelial-affine peptides (CNN). G2CNN AAV9-Cre (encoding Cre recombinase) are injected into mTmG-mice or mTmG-pigs, cell-specifically converting red to green fluorescence upon Cre-activity. Three endothelial-specific functions are assessed: in vivo quantification of adherent leukocytes after systemic injection of - G2CNN AAV9 encoding 1) an artificial adhesion molecule (S1FG) in wildtype mice (day 10) or 2) anti-inflammatory Annexin A1 (Anxa1) in ApoE-/- mice (day 28). Moreover, 3) in Cas9-transgenic mice, blood pressure is monitored till day 56 after systemic application of G2CNN AAV9-gRNAs, targeting exons 6-10 of endothelial nitric oxide synthase (eNOS), a vasodilatory enzyme. G2CNN AAV9-Cre transduces microvascular endothelial cells in mTmG-mice or mTmG-pigs. Functionally, G2CNN AAV9-S1FG mediates S1FG-leukocyte adhesion, whereas G2CNN AAV9-Anxa1-application reduces long-term leukocyte recruitment. Moreover, blood pressure increases in Cas9-expressing mice subjected to G2CNN AAV9-gRNAeNOS . Therefore, G2CNN AAV9 may enable gene transfer in vascular and atherosclerosis models.


Assuntos
Dependovirus , Células Endoteliais , Animais , Pressão Sanguínea , Dependovirus/genética , Camundongos , Camundongos Transgênicos , Suínos , RNA Guia de Sistemas CRISPR-Cas
13.
Biomed Opt Express ; 12(11): 7009-7023, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858695

RESUMO

Heart failure is one of the most common causes of morbidity and mortality. Both maturational abnormalities and age-associated cardiac pathologies contribute to heart failure. Imaging-based assessment to discern detailed cardiac structure at various maturational stages is imperative for understanding mechanisms behind cardiac growth and aging. Using multiphoton nonlinear optical microscopy (NLOM) based label-free imaging, we investigated cardiac structural composition in a human-relevant aging model, the common marmoset monkey (Callithrix jacchus). Animals were divided into three different age groups including neonatal, young adult and old. By devising a unique strategy for segregating collagen and myosin emitted second harmonic generation (SHG) signals, we performed a volumetric assessment of collagen and total scattering tissue (collagen + myosin). Aged marmoset hearts exhibited an increase in collagen and total scattering tissue volume at the sites of severe tissue remodelling indicating age-related cardiac fibrosis. Significantly low scattering tissue volume in neonatal marmoset hearts was attributed to a lack of binding between the myofibrils in maturing cardiac tissue. Comprehensive quantitative assessment of structural composition during maturation and aging of marmoset hearts revealed significant differences in myofibril length, alignment, curvature and angular distribution. In conclusion, label-free high-resolution NLOM facilitates visualization and quantification of subcellular structural features for understanding vital age-related morphological alterations in the marmoset heart.

14.
Front Cardiovasc Med ; 8: 703355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368257

RESUMO

Diabetes and the often accompanying cardiovascular diseases including cardiomyopathy represent a complex disease, that is reluctant to reveal the molecular mechanisms and underlying cellular responses. Current research projects on diabetic cardiomyopathy are predominantly based on animal models, in which there are not only obvious advantages, such as genetics that can be traced over generations and the directly measurable influence of dietary types, but also not despisable disadvantages. Thus, many studies are built up on transgenic rodent models, which are partly comparable to symptoms in humans due to their genetic alterations, but on the other hand are also under discussion regarding their clinical relevance in the translation of biomedical therapeutic approaches. Furthermore, a focus on transgenic rodent models ignores spontaneously occurring diabetes in larger mammals (such as dogs or pigs), which represent with their anatomical similarity to humans regarding their cardiovascular situation appealing models for testing translational approaches. With this in mind, we aim to shed light on the currently most popular animal models for diabetic cardiomyopathy and, by weighing the advantages and disadvantages, provide decision support for future animal experimental work in the field, hence advancing the biomedical translation of promising approaches into clinical application.

15.
J Pers Med ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207562

RESUMO

Cardiovascular diseases are the leading cause of mortality worldwide. Understanding the mechanisms at the basis of these diseases is necessary in order to generate therapeutic approaches. Recently, cardiac tissue engineering and induced pluripotent stem cell (iPSC) reprogramming has led to a skyrocketing number of publications describing cardiovascular regeneration as a promising option for cardiovascular disease treatment. Generation of artificial tissue and organoids derived from induced pluripotent stem cells is in the pipeline for regenerative medicine. The present review summarizes the multiple approaches of heart regeneration with a special focus on iPSC application. In particular, we describe the strength of iPSCs as a tool to study the molecular mechanisms driving cardiovascular pathologies, as well as their potential in drug discovery. Moreover, we will describe some insights into novel discoveries of how stem-cell-secreted biomolecules, such as exosomes, could affect cardiac regeneration, and how the fine tuning of the immune system could be a revolutionary tool in the modulation of heart regeneration.

16.
Eur Heart J ; 42(28): 2780-2792, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34104945

RESUMO

AIMS: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown. METHODS AND RESULTS: Here, we used the surface antigen CD172a as a specific marker of cardiomyocyte (CM)-derived EVs; the CM origin of CD172a+ EVs was supported by their content of cardiac-specific proteins and heart-enriched microRNAs. We found that patients with aortic stenosis, ischaemic heart disease, or cardiomyopathy had higher circulating CD172a+ cardiac EV counts than did healthy subjects. Cellular stress was a major determinant of EV release from CMs, with hypoxia increasing shedding in in vitro and in vivo experiments. At the functional level, EVs isolated from the supernatant of CMs derived from human-induced pluripotent stem cells and cultured in a hypoxic atmosphere elicited a positive inotropic response in unstressed CMs, an effect we found to be dependent on an increase in the number of EVs expressing ceramide on their surface. Of potential clinical relevance, aortic stenosis patients with the highest counts of circulating cardiac CD172a+ EVs had a more favourable prognosis for transcatheter aortic valve replacement than those with lower counts. CONCLUSION: We identified circulating CD172a+ EVs as cardiac derived, showing their release and function and providing evidence for their prognostic potential in aortic stenosis patients.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Humanos , Hipóxia , Miocárdio , Miócitos Cardíacos
17.
J Am Coll Cardiol ; 77(23): 2923-2935, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34112319

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is a result of afterload-increasing pathologies including untreated hypertension and aortic stenosis. It features progressive adverse cardiac remodeling, myocardial dysfunction, capillary rarefaction, and interstitial fibrosis often leading to heart failure. OBJECTIVES: This study aimed to establish a novel porcine model of pressure-overload-induced heart failure and to determine the effect of inhibition of microribonucleic acid 132 (miR-132) on heart failure development in this model. METHODS: This study developed a novel porcine model of percutaneous aortic constriction by implantation of a percutaneous reduction stent in the thoracic aorta, inducing progressive remodeling at day 56 (d56) after pressure-overload induction. In this study, an antisense oligonucleotide specifically inhibiting miR-132 (antimiR-132), was regionally applied via intracoronary injection at d0 (percutaneous transverse aortic constriction induction) and d28. RESULTS: At d56, antimiR-132 treatment diminished cardiomyocyte cross-sectional area (188.9 ± 2.8 vs. 258.4 ± 9.0 µm2 in untreated hypertrophic hearts) and improved global cardiac function (ejection fraction 48.9 ± 1.0% vs. 36.1 ± 1.7% in control hearts). Moreover, at d56 antimiR-132-treated hearts displayed less increase of interstitial fibrosis compared with sham-operated hearts (Δsham 1.8 ± 0.5%) than control hearts (Δsham 10.8 ± 0.6%). Of note, cardiac platelet and endothelial cell adhesion molecule 1+ capillary density was higher in the antimiR-132-treated hearts (647 ± 20 cells/mm2) compared with in the control group (485 ± 23 cells/mm2). CONCLUSIONS: The inhibition of miR-132 is a valid strategy in prevention of heart failure progression in hypertrophic heart disease and may be developed as a treatment for heart failure of nonischemic origin.


Assuntos
Antagomirs/administração & dosagem , Doenças da Aorta/complicações , Cardiomegalia/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Remodelação Ventricular/efeitos dos fármacos , Animais , Aorta Torácica/cirurgia , Cardiomegalia/complicações , Cardiomegalia/diagnóstico , Constrição , Constrição Patológica/complicações , Vasos Coronários , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Injeções Intra-Arteriais , MicroRNAs/genética , MicroRNAs/metabolismo , Stents/efeitos adversos , Suínos , Resultado do Tratamento
18.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673127

RESUMO

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the "stem- less" approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


Assuntos
Doenças Cardiovasculares/terapia , Senescência Celular , Mitocôndrias Cardíacas/transplante , Miocárdio/metabolismo , Células-Tronco/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Miocárdio/patologia , Células-Tronco/patologia
19.
Biomedicines ; 10(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052738

RESUMO

Microvascular dysfunction is a pathological hallmark of diabetes, and is central to the ethology of diabetes-associated cardiac events. Herein, previous studies have highlighted the role of the vasoactive micro-RNA 92a (miR-92a) in small, as well as large, animal models. In this study, we explore the effects of miR-92a on mouse and human cardiac microvascular endothelial cells (MCMEC, HCMEC), and its underlying molecular mechanisms. Diabetic HCMEC displayed impaired angiogenesis and a pronounced inflammatory phenotype. Quantitative PCR (qPCR) showed an upregulation of miR-92a in primary diabetic HCMEC. Downregulation of miR-92a by antagomir transfection in diabetic HCMEC rescued angiogenesis and ameliorated diabetic endothelial bed inflammation. Furthermore, additional analysis of potential in silico-identified miR-92a targets in diabetic HCMEC revealed the miR-92a dependent downregulation of an essential metalloprotease, ADAM10. Accordingly, downregulation of ADAM10 impaired angiogenesis and wound healing in MCMEC. In myocardial tissue slices from diabetic pigs, ADAM10 dysregulation in micro- and macro-vasculature could be shown. Altogether, our data demonstrate the role of miR-92a in cardiac microvascular dysfunction and inflammation in diabetes. Moreover, we describe for the first time the metalloprotease ADAM10 as a novel miR-92a target, mediating its anti-angiogenic effect.

20.
Thromb Haemost ; 121(3): 341-350, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33011963

RESUMO

The high mortality seen in sepsis is caused by a systemic hypotension in part owing to a drastic increase in vascular permeability accompanied by a loss of pericytes. As has been shown previously, pericyte retention in the perivascular niche during sepsis can enhance the integrity of the vasculature and promote survival via recruitment of adhesion proteins such as VE-cadherin and N-cadherin. Sphingosine-1-phosphate (S1P) represents a lipid mediator regulating the deposition of the crucial adhesion molecule VE-cadherin at sites of interendothelial adherens junctions and of N-cadherin at endothelial-pericyte adherens junctions. Furthermore, in septic patients, S1P plasma levels are decreased and correlate with mortality in an indirectly proportional way. In the present study, we investigated the potential of S1P to ameliorate a lipopolysaccharide-induced septic hypercirculation in mice. Here we establish S1P as an antagonist of pericyte loss, vascular hyperpermeability, and systemic hypotension, resulting in an increased survival in mice. During sepsis S1P preserved VE-cadherin and N-cadherin deposition, mediated by a reduction of Src and cadherin phosphorylation. At least in part, this effect is mediated by a reduction of globular actin and a subsequent increase in nuclear translocation of MRTF-A (myocardin-related transcription factor A). These findings indicate that S1P may counteract pericyte loss and microvessel disassembly during sepsis and additionally emphasize the importance of pericyte-endothelial interactions to stabilize the vasculature.


Assuntos
Lisofosfolipídeos/uso terapêutico , Pericitos/efeitos dos fármacos , Sepse/tratamento farmacológico , Esfingosina/análogos & derivados , Transativadores/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Pericitos/patologia , Sepse/induzido quimicamente , Sepse/metabolismo , Sepse/patologia , Esfingosina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA